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Double quantum dots can provide an experimental realization of the two-impurity Kondo model which
exhibits a non-Fermi-liquid quantum critical point �QCP� at a special value of its parameters. We generalize
our recent study of double quantum dots in series �E. Sela and I. Affleck, Phys. Rev. Lett. 102, 047201 �2009��
to a parallel configuration with an Aharonov-Bohm flux. We present an exact universal result for the finite
temperature and finite voltage conductance G�V ,T� along the crossover from the QCP to the low energy
Fermi-liquid phase. Compared to the series configuration, here generically G�V ,T��G�−V ,T�, leading to
current rectification.
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I. INTRODUCTION

It is now well established that quantum dots �QDs� be-
have as Kondo impurities at low temperatures.1,2 Whereas
many theoretical tools are available to address linear trans-
port, the nonequilibrium regime is far less studied, although
it is typically addressed in experiment.3 A solution of non-
equilibrium transport through a one-channel Kondo impurity
was achieved in Ref. 4; however exact results were obtained
only for a specific point in the parameter space �Toulouse
limit�. Another important development in this direction was
the application of the Bethe ansatz and finding of many body
scattering states.5,6 Recently we found exact results for non-
linear transport close to a quantum critical point �QCP� in a
double dot in series realizing the two-impurity Kondo model
�2IKM�, and showing non-Fermi liquid �NFL� behavior.7

The 2IKM consists of two-impurity spins coupled to two
channels of conduction electrons and, at the same time, in-
teracting with each other through an exchange interaction K.
Jones et al.8 observed that a QCP at K=Kc separates a “local
singlet” from a Kondo-screened phase, where Kc is of the
order of the Kondo temperature TK. The exact critical behav-
ior was found using conformal field theory9,10 �CFT� and
Abelian bosonization11 methods. Implications of the 2IKM
for transport through double QDs were studied in Refs.
12–19.

The presence of a sharp quantum phase transition in the
2IKM became questionable soon after its discovery; in the
mean field study in Ref. 20 it was pointed out that the true
QCP is restricted to the case of a special particle hole �PH�
symmetry assumed in Ref. 8. This was confirmed by numeri-
cal renormalization group calculations.21 PH symmetry
breaking was later associated with two relevant potential
scattering �PS� perturbations.10,17 Thus, in real systems the
critical behavior for K=Kc can be observed only above a
certain crossover energy scale, denoted here as TLR

� . In order
to obtain reliable predictions for QDs it is crucial to include
the extra relevant perturbations associated with potential
scattering in a real calculation. We achieved this task for a
double QD �Ref. 7� using the method developed by Gan.11

The finding of exact crossover results including PH symme-
try breaking remains an open problem for the alternative pro-

posed realization of the 2IKM by Zaránd et al.17 Compared
to their QD system involving at least three leads, our system
has only two leads making the nonequilibrium behavior
more tractable.

In this paper we generalize our previous results to a ge-
neric configuration ranging from series to parallel QD at-
tached to two leads �see Fig. 1�. In this generic configuration
transport from left to right occurs via different interfering
paths. A particular feature of our results distinguishes the
generic case from the series case: in the generic case the
finite voltage conductance G�V� has the property G�V�
�G�−V�, leading to current rectification, similar to a diode.
This effect results from interactions and is absent in a non-
interacting Landauer description.22 An additional aim of this
paper is to provide important details on the calculation for
the general series or parallel cases.

The outline of the paper is as follows. In Sec. II the
double QD system is presented and mapped to the 2IKM. In
Sec. III the conductance is calculated at the QCP using CFT
methods, neglecting the effect of potential scattering. In Sec.
IV we consider deviations from the QCP due to variations in
K from Kc and calculate the finite temperature crossover for
the linear conductance using a mapping of the PH symmetric
2IKM to the Ising model with a boundary magnetic field. We
also apply this mapping for the QD system proposed by
Zaránd et al.17 as a realization of the 2IKM. In Sec. V po-
tential scattering is incorporated in the Hamiltonian close to
the QCP and in the crossover formula for the linear conduc-
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FIG. 1. Schematic description of the physical system, consisting
of two leads �L and R� and two quantum dots with effective spin
1/2. We use the convention that for finite flux t1L→ t1Lei�L and
t2R→ t2Rei�R, where the tiL are defined as tunneling amplitudes from
lead �L ,R�→dot �i�.
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tance. In Sec. VI the full nonequilibrium problem at finite
voltage and temperature in the vicinity of the critical point is
addressed. Section VII contains conclusions. We relegate de-
tails on the calculation of the nonlinear conductance using
Keldysh Green’s functions �GFs� to the Appendix.

II. MODEL

The physical system under consideration is shown sche-
matically in Fig. 1. It consists of left �L� and right �R� leads
tunnel coupled to two quantum dots 1, 2, with tunneling
amplitudes tiL/R, �i=1,2�. We assume that both dots are in the
Kondo regime, with gate voltages adjusted to give an odd
number of electrons, and the tiL/R are sufficiently weak com-
pared to the charging energy, U, so that charge fluctuations
can be ignored. We write the effective spin-1/2 moments as

S�1 and S�2. We will be primarily interested in the case where
t1L , t2R� t1R , t2L so that the left lead is primarily coupled to
dot 1 and the right lead to dot 2 since only in this case will
the QCP occur. Note that in the extreme case where t1R
= t2L=0, this reduces to the series configuration analyzed, for
example, in Ref. 7. The fluxes �L and �R are introduced in
the triangular plaquettes as shown.

In the standard fashion,23 the conduction-electron chan-
nels that couple to the impurity are reduced to one-
dimensional left moving Dirac fields �i��x�, where i=L ,R
and �= ↑ ,↓ are the lead and spin indices, respectively. We
assume that a single mode in each lead couples to both im-
purities. Here we have linearized the conduction-electron
dispersion around the Fermi level: �k=�vFk, where �k and k
are measured relative to the Fermi level and Fermi wave
number, respectively. x is a fictitious position variable con-
jugate to k. We set �=vF=1.

We discuss the different terms which will appear in the
model Hamiltonian �Eq. �2.2��. An exchange interaction

K12 �
t12
2

U
�2.1�

between the impurity spins is generated by the interimpurity
tunneling t12. The impurity spins are also Kondo coupled to
the conduction-electron spin density at the origin,

s� j
i = �†i��� �

	

2
� j	,

i, j = L,R = 1,2 �repeated spin indices summed� .

In addition there are PS terms 
�†i�
� j� �repeated spin indi-

ces summed�. The system is driven out of equilibrium by a
source drain voltage V. Thus, the Hamiltonian H is

H = H0 + HV + K12S�1 · S�2 + HK + HPS + H�,

H0 = �
−�

�

dx�†j�
i�x� j�,

HV =
eV

2
�

−�

�

dx�†i�
��z�i

j� j�,

HK = �
�=1,2

�J����i
js� j

i · S��,

HPS = �†i�
Vi

j� j�, �2.2�

with repeated lead and spin indices summed. To be complete
one has to add the terms

H� = Vi�
js� j

i · �S�1 S�2� + �†i�
Vi�

j� j��S�1 · S�2� .

However, close to the QCP the first �second� term of H� has
a similar effect as HK �HPS�. Therefore, up to a correction to
the actual coupling constants, energy scales, and to the criti-
cal value of different parameters at the QCP, all of which we
are not able to determine exactly, it is legitimate to neglect
H�.

The Kondo interaction induces, via the Ruderman-Kittel-
Kasuya-Yosida �RKKY� mechanism, an additional contribu-
tion to the interimpurity exchange, K=K12+KRKKY, where

KRKKY = 2�S1 = ↓,S2 = ↑	HK
1

− H0
HK	S1 = ↑,S2 = ↓


= 4 �
k1�0,k2�0

1

− ��k1
− �k2

�
tr�J�1�J�2�� .

With the parametrization of J��� given in Eq. �2.6�,
tr�J�1�J�2��=4J2 sin2�2��cos2�

2 . Using �k=�d�, where � is
the density of states in the leads, and restricting the band-
width to ��k��U, beyond which the effective spin description
breaks down, one obtains a ferromagnetic contribution,

KRKKY � − ��J�2U sin2�2��cos2�

2
. �2.3�

We estimate the potential scattering amplitudes by

Vi
i �

t1i
2 + t2i

2

U
�i = L,R� ,

VL
R �

t1Lt1Rei�L + t2Lt2Re−i�R

U
+ c�

t1Lt12t2Rei��L−�R� + t2Lt12t1R

U2 ,

�2.4�

where c� is a constant factor of order 1. Until Sec. VI A we
will assume the parity symmetry

S1 ↔ S2, L ↔ R . �2.5�

However our results are not restricted to this case, as will be
discussed in Sec. VI A. Parity implies t1L= t2R� t1; t2L= t1R
� t2. For finite flux �=�L+�R the parity symmetry is pre-
served for �L=�R. Calculating the Kondo couplings to sec-
ond order in the tunneling amplitudes, under this symmetry,

gives �J�1� ,J�2��
 � vv†

U , �
xvv†�x

U �, where v= �
t1ei�/2

t2
�. This leads us

to parametrize the Hermitian exchange matrices by

J�1� = Ĵ, J�2� = �xĴ�x, Ĵ = J�1 + cos�2���z + sin�2��

�cos��/2��x − sin��/2��y�� , �2.6�

where
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� = �arctan�t2/t1��, J �
t1
2 + t2

2

U
. �2.7�

Parity symmetry for the PS amplitudes implies VL
L=VR

R, VR
L

=VL
R �Im VL

R=0�. We can estimate

VL
L �

t1
2 + t2

2

U
, VR

L �
t1t2

U
cos
�

2
+ c�

�t1
2 + t2

2�t12

U2 . �2.8�

It is convenient to define even and odd channels �e,o

=
�L��R

�2
in terms of which the parity transformation reads

�e→�e, �o→−�o. The most general form of HK+HPS con-
sistent with parity is

HK = Je�
†e��� �

	

2
�e	 · �S�1 + S�2� + J0�

†o��� �
	

2
�o	 · �S�1 + S�2�

+ �Jm�
†e��� �

	

2
�o	 + H.c.� · �S�1 − S�2� ,

HPS = Ve�
†e�
�e� + Vo�

†o�
�o�. �2.9�

Indeed using Eq. �2.6� we obtain HK+HPS in this form with

Je,o =
ĴL

L + ĴR
R� �ĴL

R + ĴR
L�

2
= J�1� sin�2��cos��/2�� ,

Jm =
ĴL

L − ĴR
R + ĴL

R − ĴR
L

2
= J�cos�2�� − i sin�2��sin��/2��

= �Jm�ei�m,

Ve,o =
VL

L + VR
R� �VL

R + VR
L�

2
, �2.10�

where

�m = − arctan�tan�2��sin��/2�� . �2.11�

For finite flux Jm has an imaginary part. To recover real
coupling constants in HK we remove this phase by a redefi-
nition of the fields,

�e → �e� = e−i�m/2�e,

�o → �o� = ei�m/2�o. �2.12�

In the �e,o� basis, HK has real coupling constants, Je, Jo, and
�Jm�, and it corresponds to the notation in Ref. 10. It is con-

venient to define �1�=
�e�+�o�

�2
, �2�=

�e�−�o�
�2

. Equivalently, the
fields � j� �j=1,2� are related to the L-R basis by the rotation
�i= �Mei�z�m/2M�i

j� j�, where M= �z+�x

�2
.

As will be discussed in Sec. VI A, observability of the
QCP in this system is restricted to the regime t1� t2 or
equivalently small � �see Eq. �2.7��. In this limit the two-
impurity Kondo physics is especially transparent since each
QD is coupled essentially to one lead.7 K can be tuned by
means of t12. For K�Kc the impurities are locked into a
singlet, while for K=0 each impurity is Kondo screened by
the nearby lead. In the case of exact PH symmetry, occurring

for Vi
j =0, those points in the K-parameter space are sepa-

rated by a QCP at a critical value K=Kc�TK.8

III. CONDUCTANCE AT THE QUANTUM
CRITICAL POINT

In Ref. 7 the conductance of a series double QD was
calculated using the tunneling current operator. In this paper
until Sec. VI we use the Kubo linear conductance formula
written in terms of bulk current correlation function. The
reason for taking this different approach here is that it relates
the conductance to correlation functions in certain field theo-
ries, which can be addressed using boundary conformal field
theory or integrability methods. This allows us to express the
conductance of double QDs described by the 2IKM in terms
of correlation functions in the boundary Ising field theory.

The linear conductance can be calculated from the Kubo
formula,

G = lim
L→�

lim
�→0

e2

���2L�2�
−L

L

dr�
−L

L

dr��
−�

�

d�e−i��

 �J�r,��J�r�,0�� .

Here r is the physical coordinate �see Fig. 2�. It should be
distinguished from the fictitious coordinate x labeling the
chiral fermions �i��x�. We define the chiral current densities
in each lead jL�x�=�†L�

�x��L��x�, jR�x�=�†R�
�x��R��x�. The

bulk current operator J�r� can be written as

J�r� = − � jR�r� − jR�− r� , r� 0

jL�r� − jL�− r� , r� 0.
�

It is useful to define the odd current jo�x�= jL�x�− jR�x� since
−L

L drJ�r�=−L
L dxjo�x�sgn�x�. The conductance is given in

terms of the odd current correlator,

G = lim
L→�

lim
�→0

e2

���2L�2�
−L

L

dx�
−L

L

dy�
−�

�

d�e−i��

 �jo�x,��jo�y,0��sgn�xy� . �3.1�

The odd current jo�x�=�†j�
��z� j

j� j� corresponds to the z
component of the flavor current of the fermions in the L-R
basis. We define the flavor current in terms of the fermions
� j�� after the rotation �Eq. �2.12��,

j�f = ��†i���i
j

2
� j�� �repeated indices summed� . �3.2�

The transformation �Eq. �2.12�� amounts to a rotation in the
flavor sector,

r

x

r=0
jR(x<0)

jR(x>0)
x

jL(x>0)

jL(x<0)

L R

FIG. 2. Illustration of the physical coordinate r running from
left to right leads and the fictitious coordinate x labeling position of
the chiral fields �i��x� in lead i=L ,R.
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jo = 2�cos �m�j f�z − sin �m�j f�y� . �3.3�

Consider the weak-coupling limit J→0. It corresponds to
a trivial boundary condition �BC� �L�x=0+�=�L�x=0−�,
�R�x=0+�=�R�x=0−�, describing free fermions with full re-
flection at the boundary. Also this BC makes apparent the
continuity of the chiral fields �L, �R at x=0. Accordingly, the
odd current correlator is given by

�jo�x,��jo�y,0��J=0 = −
1

�2

1

�� + i�x − y��2 .

To calculate the odd current correlator at the nontrivial fixed
point, we apply CFT methods and the Bose-Ising represen-
tation used in Ref. 10. In this representation the four fermi-
ons �i�� are represented using a coset construction in terms of
three Wess-Zumino-Witten �WZW� nonlinear � models,
SU�2�1

charge1SU�2�1
charge2SU�2�2

spin, together with a Z2
Ising model. The currents of the two SU�2�1 � models are
associated with the charge of each species �1�� and �2�� . The
current of the SU�2�2 model is associated with the total spin.

Following Ref. 10 one may write down representations of
the various operators in the free fermion theory as product of
charge �or isospin� bosons, the total spin boson, and the Ising
field. The k=2 WZW model has primary fields of spin j=0
�identity operator 1�, j=1 /2 �fundamental field g��, and j
=1 �denoted �� �. The k=1 WZW model only has the identity
operator and the j=1 /2 primary, hA. Their scaling dimension
is given by �= j�j+1�

2+k . The Ising model has three primary
fields: the identity operator 1 ��=0�, the Ising order param-
eter � ��=1 /16�, and the energy operator � ��=1 /2�. For
example, the fermion field is written in this representation as

�i�� 
 �hi�1g�� . �3.4�

The three factors have dimensions which add correctly to
1/2. The representation of other operators can be determined
using the operator product expansion �OPE�. For the Ising
model the OPE gives

�  �→ 1 + �, �  �→ �, �  �→ 1 .

This OPE is equivalent to that of the k=2 WZW model with
the identifications �↔g and �↔�� .

Using the OPE, symmetry considerations, and consistency
of scaling dimensions, we shall determine the representation
of the odd current jo. The latter is related in Eq. �3.3� to the
flavor current operators �j f�z and �j f�y = �j f�+−�j f�−

2i . First con-
sider �j f�z= 1

2 ���†1�
�1�� −��†2�

�2�� �. This is just the charge dif-

ference between flavors, represented by I1
z − I2

z , where I�i is the
SU�2�1

chargei current �i=1,2�. For the operator �j f�+

=��†1�
�2�� , we use Eq. �3.4�,

��†1�
�x��2�� �x� 
 lim

x�→x

g�†�x��g��x��h1�1†�x��

�h2�1�x���x����x� .

Consider the OPE of the fundamental field gg=1+�� . The
operator under consideration is a spin singlet, ruling out �� in
the OPE. To account for the consistency of scaling dimen-

sions we must have ��→�. Hence ��†1�
�2��


 �h1�1†�h2�1�. The Bose-Ising representation of the flavor
current is summarized in the first column of Table I. In the
second column we consider an alternative SO�8� representa-
tion introduced in Sec. VI.

The main result in Ref. 10 is that the nontrivial BC of the
2IKM at K=Kc corresponds to a change in the boundary
condition occurring only in the Ising sector of the theory: the
nontrivial BC of the electrons corresponds to the free BC on
the Ising chain, whereas the trivial BC for the electrons cor-
responds to the Ising model with a fixed-boundary spin.24 We
shall refer sometimes to the BC of the full system at the
nontrivial fixed point by “free” and at the trivial free fermion
fixed point by “fixed.”

The remaining sectors of the theory other than the Ising
model remain unaffected. Correlation functions of factors be-
longing to sectors other than the Ising model have the form
dictated by conformal invariance, �O��x ,��O��y ,0��
= 1

��+i�x−y��2� , where � is the scaling dimension of O. This
form remains valid both at the trivial and nontrivial fixed
points. On the other hand correlation functions of fields from
the Ising sector do depend on BC. There is a general formula
for correlation function of primary operators for a BC ob-
tained by fusion with a primary a,25,26

�O��x,��O��y,0�� =
1

�� + i�x − y��2�� 1, xy� 0

Sa
�/S0

�

Sa
0/S0

0 , xy� 0.�
�3.5�

Here Sj
a are elements of the modular S matrix. For the Ising

model this is given by

S = � 1/2 1/2 1/�2

1/2 1/2 − 1/�2

1/�2 − 1/�2 0
� ,

where the first, second, and third rows and columns are la-
beled by the fields with scaling dimension 0, 1/2, and 1/16,
respectively. The change in BC in the 2IKM from trivial to
nontrivial fixed points corresponds to fusion with the spin
operator in the Ising sector.10 Setting �=1 /2,a=1 /16 we

have
Sa
�/S0

�

Sa
0/S0

0 =−1. Hence Eq. �3.5� gives

���x,����y,0��free = ���x,����y,0��fixed · sgn�xy� , �3.6�

where up to a normalization factor ���x ,����y ,0��fixed



1

�+i�x−y� . We may interpret this as a phase shift of � /2 that
the energy operator ��x� undergoes at x=0. We proceed to

TABLE I. Bose-Ising versus SO�8� Majorana representation of
the flavor current.

SU�2�1SU�2�1SU�2�2Z2 SO�8�

�j f�z I1
z − I2

z � f
†� f

�j f�+ �h1�1†�h2�1� � f
†�2

X
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evaluate the odd current correlation function. Since the
crossed terms ��j f�z�j f�y� vanish, we obtain

�jo�x,��jo�y,0��free = �jo�x,��jo�y,0��J=0

 �1, xy� 0

cos�2�m� , xy� 0.
� �3.7�

One can use the Kubo formula �Eq. �3.1�� to calculate the
conductance. However a calculation is unnecessary: curi-
ously, one obtains exactly the same result for the odd current
correlation function �Eq. �3.7��, assuming free fermions with
partially transmitting BC,

�L�0+� = cos��m��L�0−� + i sin��m��R�0−� ,

�R�0+� = i sin��m��L�0−� + cos��m��R�0−� . �3.8�

This BC corresponds to transmission probability sin2 �m per
spin. From Landauer formula22 the linear conductance at the
nontrivial fixed point is

G0 =
2e2

h
sin2 �m, �3.9�

where �m is given in Eq. �2.11�. This gives G0=0 for �m
=0, in particular for �=0 and for the case of a series QD �in
this section VL

R=0�.7 Also in the experimentally relevant re-
gime t1� t2 �see Sec. VI A�, corresponding to small � �see
Eq. �2.7��, G0�2e2 /h. �Note however, that the actual BC at
the nontrivial fixed point written in terms of the true fermi-
ons is very different from Eq. �3.8�. This is apparent from the
vanishing of the one-particle S-matrix.10 The auxiliary fermi-
ons satisfying linear boundary condition emerge in the SO�8�
representation that we shall use in Sec. VI.�

A. T=0 phase diagram

Having found the conductance at the QCP at K=Kc, we
shall consider the surrounding FL fixed points and draw a
phase diagram. Here and until Sec. V we consider the PH
symmetric model. In this model charge transfer between the
leads leading to finite current is allowed by the exchange
interaction in HK. The main role of �=arctan�t2 / t1� and flux
� is to modify the crossover scales TK and Kc. We plot in

Fig. 3 the phase diagram at fixed � as a function of K and
flux. The NFL state occurs along the curve K=Kc���, where
Kc�TK�Je ,Jo ,Jm� and Je ,Jo ,Jm depend on flux through Eq.
�2.10�. This curve is characterized by a finite conductance
G=G0 at ��0,2�. It separates the K�Kc local singlet
phase from the K�Kc Kondo-screened phase.

The conductance vanishes in both FL phases. At K�Kc
the system remains in its weak-coupling limit, corresponding
to weakly transmitting tunnel junctions. At K�Kc a Kondo-
screened phase is developed and the two channels �e and �o
participate in the screening of the combined spin-1 impurity.
In the effective FL description both the even and odd chan-
nels acquire a phase shift of �e=−�o=� /2. The conductance
vanishes as a result of destructive interference between even
and odd channels: an incoming electron from the left lead

�L
in=

�e
in+�o

in

�2
scatters into the outgoing state

�e
oute2i�e+�o

oute2i�o

�2
=−�L

out in the left lead, corresponding to full reflection. �The
situation is reversed if a � /2 phase shift occurs only in one
channel�. We point out that when we include PH symmetry
breaking the conductance is finite in the FL phases.

In the Hamiltonian �Eq. �2.9�� the condition Jm�0 is re-
quired to mix the impurity singlet and triplet subspaces of
the Hilbert space. At Jm=0 the transition at K=Kc corre-
sponds to a level crossing between those subspaces. We point
out that this special situation occurs in our system for the
symmetric point t1= t2 ��=� /4� and at zero flux. In this case,
when K�Kc the conductance is G= 2e2

h since the odd channel
is decoupled, �o=0, and as a result of Kondo effect in the
even channel �e=� /2. This decoupling took place in several
theoretical studies of parallel QDs with no magnetic flux;
see, e.g., Ref. 19.

IV. UNIVERSAL CROSSOVER AS A FUNCTION OF
INTERIMPURITY INTERACTION K

In Sec. III A we calculated the conductance at the critical
value of the interimpurity exchange interaction K=Kc and
assuming PH symmetry. In this situation the system flows
from weak coupling �J=0� to a NFL fixed point, correspond-
ing to free BC in the Ising sector. At finite �K−Kc� the system
flows to another fixed points as illustrated in Fig. 4. Depend-
ing on the sign of K−Kc, those two states correspond to
fixing the boundary spin in a semi-infinite Ising chain to
point up or down. Note that whereas both the attractive and
J=0 fixed points in Fig. 4 correspond to fixed-boundary con-
dition in the Ising sector, they differ by the impurity spin
states. The latter are decoupled and contribute to the ground
state degeneracy only at the repulsive J=0 fixed point.

K

Π

2 Π
�

G�0G�0

G�G0�� �

Inter�impurity
singlet

Kondo screening

NFL

FIG. 3. Schematic phase diagram as a function of interimpurity
interaction K �controlled by t12� and flux � for fixed asymmetry
�we assume a generic situation t1� t2�. Here PH symmetry is as-
sumed. The conductance is finite only at the NFL curve defined by
K=Kc��� except for �=0,2�.

NFL

J=0
(free)

(fixed)

(fixed) K-Kc , h

FIG. 4. Schematic flow diagram of the PH symmetric two-
impurity Kondo model.
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The crossover along the horizontal line in Fig. 4 is gov-
erned by the Kondo energy scale TK. The universality of this
crossover between fixed- and free-boundary conditions in the
Ising sector, however, is spoiled by irrelevant operators
emerging from other sectors of the theory.

The crossover along the vertical line in Fig. 4 is governed

by an energy scale T�=c1
�K−Kc�2

TK
, where c1 is a numerical

factor of O�1�. It was argued in Ref. 10 that this crossover is
in the universality class of the crossover from free- to fixed-
boundary conditions in the Ising model, driven by a local
magnetic field h at the boundary of a quantum Ising chain.
The magnetic field h is linearly related to K−Kc,

T� = c1
�K − Kc�2

TK
= h2. �4.1�

When T��TK we may safely ignore sectors other than the
Ising sector in the low energy crossover. This mapping of the
2IKM to the boundary Ising model opens the possibility to
calculate the full crossover formula for the conductance as a
function of h�

K−Kc

�TK
at finite temperature due to exact solv-

ability of the boundary Ising model.

A. Boundary Ising model

It is well known that the scaling limit of the two-
dimensional classical Ising model at its bulk critical point is
described by a free massless Majorana field theory. Here we
consider the two-dimensional model with a boundary, which
is equivalent to the quantum semi-infinite chain. After un-
folding the model in the standard fashion23 we obtain a left
moving Majorana fermion on the infinite line,

HIsing =
1

2
�

−�

�

dx��x�i�x��x� + HB, HB = h�B. �4.2�

At h=0 this model corresponds to free BC, expressed by the
continuity of the chiral Majorana fermion field ��x� at x=0.
h is an external magnetic field acting on the boundary spin
�B only. Clearly h=�� implies fixed BC. The boundary
spin can be written as27

�B = i��x = 0�a . �4.3�

Here a is an additional Majorana fermionic boundary degree
of freedom which anticommutes with � and satisfies a2

=1 /2.
The bulk energy operator of the Ising model corresponds

to a mass term m��̄, which is a product of a left- and a
right-moving Majorana fields. Therefore the left moving fac-
tor of the energy operator, which is the field we refer to as
the energy operator, is just the free Majorana fermion ��x�
���x� with dimension �=1 /2. Note that � was introduced
most naturally within free BC, while � was introduced to
represent free fermions at the fixed BC fixed point. Indeed,
for free BC of the Ising model ��x� is continuous and ��x�
undergoes a � /2 phase shift at x=0 �see Eq. �3.6��. Hence,

��x� = sgn�x���x� . �4.4�

B. Energy correlator at finite boundary field

In a bulk CFT a typical local operator is a product of left-
and right-moving factors ��x�=�L�x��R�x� where we sup-
press the time variable. The Ising model has three primary
bulk operators denoted O�, ��=1 /2,1 /16,0�. In the pres-
ence of a boundary at x=0 one can formulate the theory in
terms of left moving fields only, ��x�=�L�x��L�−x�, x�0.
For example, O1/2�x�=��x���−x�. In particular, at �=0,
y=−x the correlator of the left-moving Ising fields � at any h
is related to the one-point function of the bulk energy opera-
tor of the boundary Ising model, ���x ,0���−x��h= �O1/2�x��h.
The one-point function of the bulk energy operator was cal-
culated using the integrability of the boundary Ising model
with the result27–29

�O1/2�x��h = �
−�

� du

2�

e2iux

1 + e	u

ih2/2 − u

ih2/2 + u
. �4.5�

Here 	=T−1 is the inverse temperature. More generally con-
sider the correlation function Ch�x ,y ,��= ���x ,����y ,0��h.
Consider a perturbative calculation of Ch�x ,y ,�� in HB. It can
be shown26 that �i� the correction vanishes for xy�0, �ii� for
xy�0 the correction is a function of z=�+ i�x−y�. This im-
plies that we can analytically continue the one-point function
to find Ch�x ,y ,��,

Ch�x,y,�� = �O1/2�x��h�x→−iz, x� 0,y� 0. �4.6�

For x�0, y�0 one can use Ch�x ,y ,��=−Ch�y ,x ,−��, where
the − sign arises from the fermionic nature of �.

C. Direct calculation of the energy correlator

For the present problem the desired correlator can be
computed directly as will be done in this section. We turn to
a calculation of the Majorana Green’s function �GF�
G�� ,x ,y�=−���x ,����y ,0�� at finite h and temperature T
=	−1. From Eq. �4.4�, the energy correlator is

���x,����y,0��h = − G��,x,y�sgn�xy� . �4.7�

For h=0, G�� ,x ,y� is a free fermion GF,

G�0���,x,y� =
1

2�

− �/	

sin��
	

�� + i�x − y��� =
1

	
�

n

e−i�n�

G�0��i�n,x,y� =
i

	
�

n

e−i�n��+i�x−y��

���− �n���x − y� − ���n���y − x�� ,

where �n= �
	 �1+2n�. Since the interaction in Eq. �4.3� is

quadratic in fermion fields, we may sum up the perturbation
series in the boundary magnetic field exactly, giving

G�i�n,x,y� = G�0��i�n,x,y� + h2G�0��i�n,x,0�Ga�i�n�

G�0��i�n,0,y� . �4.8�

Here Ga�i�n�=−0
	d�ei�n��a���a� is the a propagator. When a

is decoupled, its propagator is given by Ga
�0��i�n�= �i�n�−1.

Equation �4.8� becomes exact when Ga�i�n� is calculated to
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infinite order in h. This is accomplished by the self-energy
�a�i�n�=h2G�0��i�n ,0 ,0�=−ih2 sgn��n� /2. Thus

Ga�i�n� = �i�n + ih2 sgn��n�/2�−1. �4.9�

Plugging this result in Eq. �4.8� yields the result

G�i�n,x,y� = G�0��i�n,x,y� + ie�n�x−y� �
s=�1

��s�n�

��sy���− sx�
h2

�n + h2 sgn��n�/2
. �4.10�

When xy�0 there is no dependence on h. To compare Eq.
�4.10� in the nontrivial region xy�0 with the result obtained
by analytic continuation of the one-point function of the en-
ergy operator �Eq. �4.5��, we write the Fourier transform of
Eq. �4.10� into

G��,x,y� = �
−�

� du

2�

eu��+i�x−y��

1 + e	u

ih2 sgn�x − y�/2 − u

ih2 sgn�x − y�/2 + u
,

valid for x ·y�0. One arrives at the same result using Eqs.
�4.5�–�4.7�. In this notation the integration variable u is re-
lated to the momentum of the particles used in the form
factor method.

D. Finite temperature conductance

At finite temperature the conductance is obtained by ana-
lytic continuation,

G = lim
L→�

lim
�→0

ie2

���2L�2�
−L

L

dx�
−L

L

dy sgn�xy�

 �
−	/2

	/2

d�e−i�n��jo�x,��jo�y,0���i�n→�+i0+, �4.11�

where �n= 2�n
	 . For h=0 the finite temperature odd current

correlator, �jo�x ,��jo�y ,0��free, is given by Eq. �3.7� where
�jo�x ,��jo�y ,0��J=0=− 1

	2 sin2� 1
	

��+i�x−y���
. At finite h we use Eq.

�3.3� and ��j f�z�x ,���j f�y�y��=0, leading to

�jo�x,��jo�y,0��h = 4 cos2 �m��j f�z�x,���j f�z�y��

+ 4 sin2 �m��j f�y�x,���j f�y�y�� .

Using the Bose-Ising representation of the flavor currents,
given in Table I, and Eq. �4.7�, we obtain

�jo�x,��jo�y,0��h = − 4 cos2 �m�G�0���,x,y��2

− 4 sin2 �m sgn�xy�G�0���,x,y�G��,x,y� .

Compared to free BC, the odd current correlator obtains an
additional term,

�jo�x,��jo�y,0��h = �jo�x,��jo�y,0��free

− 2 sin2 �m

G��,x,y� − G�0���,x,y�

	 sin��
	

�� + i�x − y��� .

�4.12�

The first term contributes 2e2

h sin2 �m to the conductance. The

second term is nonvanishing only for xy�0, as can be seen
from Eq. �4.10�. Note that G�� ,x ,y�−G�0��� ,x ,y�→h→�
−2G�0��� ,x ,y���−xy�, hence

�jo�x,��jo�y,0��h→� = �jo�x,��jo�y,0��fixed

as expected. At finite T and h the contribution of the second
term to the conductance is given by 2 Re G1, where

G1 = lim
L→�

lim
�→0

− ie2

���2L�2�
−L

0

dx�
0

L

dy�jo�x�jo�y��i�n→�+i0+
�1� ,

where �jo�x�jo�y���1�= �jo�x�jo�y��h− �jo�x�jo�y��free. This cor-
relator can be expressed as a Matsubara sum,

�jo�x� 0�jo�y� 0��i�n

�1� =
4 sin2 �m

	2 �
−	/2

	/2

d�ei�n�

�
m,l
���m����l�e−i��m+�l���+i�x−y�� ih2

i�l + ih2/2

=
sin2 �m

�2

�2��2

	
e�n�x−y�2�

l=0

n−1
	h2

2��1 + 2l� + 	h2 .

The sum is evaluated as an analytic function of �n= 2�n
	 in

terms of the digamma function �the logarithmic derivative of
the gamma function� ��z�=d log ��z� /dz,

�
l=0

n−1
4�

2��1 + 2l� + 	h2 = ��1

2
+
	h2

4�
+
	�n

2�
� − ��1

2
+
	h2

4�
� .

Performing the analytic continuation i�n→�+ i0+, sending
�→0, and performing the spatial integrations we obtain

G/G0 = 1 − F�T/T��, F�t� =
1

4�t
Re �1�1

2
+

1

4�t
� ,

�4.13�

where �1�z�=d2 log ��z� /dz2 is the trigamma function and
G0 and T� are given in Eqs. �3.9� and �4.1�. The scaling
function F�x� has the properties F�0�=1 and F���=0. A sig-
nature of a NFL is the existence of relevant operators in the
Hamiltonian with scaling dimension ��1. The QD setup
discussed here allows us to observe that the interimpurity
interaction is such a relevant perturbation with �=1 /2. Ac-
cording to Eq. �4.13� the crossover from G�G0 to insulating
FL state as a function of K−Kc occurs at a value of �K−Kc�
which scales with temperature as T1/2.

E. Conductance in the model of Zaránd et al. (Ref. 17)

We pause here to comment on an application of the Ising
model with boundary magnetic field for a different double
QD model proposed by Zaránd et al.17 as a realization of the
2IKM. We will show that in this system the full crossover of
the conductance as a function of K in the PH symmetric
point can be expressed in terms of the one-point function of
the spin operator of the boundary Ising model.

Consider a modified QD system with an additional lead B
coupled only to S2 as in Fig. 5. Transport takes place be-
tween the left and right leads, where lead B acts as a screen-
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ing channel for spin S2. The analysis of Sec. III goes through,
and the conductance is given by Eq. �3.1�, where the odd
current is still written as jo�x�=�†j�

��z� j
j� j�, j=1,2=L ,R.

The next step in Sec. III was to rewrite jo�x� in the basis ��
which is natural in the representation of the 2IKM Hamil-
tonian. For the present system this basis is

�1� =
t1L�L + t1R�R

�t1L
2 + t1R

2
, �2� = �B.

A third fermion �3�=
−t1R�L+t1L�R

�t1L
2 +t1R

2 is decoupled from the impu-

rities. We specialize to t1L= t1R. In this basis the correlator
�jo�x ,��jo�y ,0�� occurring in the Kubo formula factorizes
into the product of GFs for �1� and �3�, where the latter is a
free fermion GF. For the GF of �1� we use the bosonization
formula �Eq. �3.4��, where the only factor which is sensitive
to the critical point is the Ising spin operator, leading to

�jo�x,��jo�y,0�� = −
1

�2

���x,����y,0��
�� + i�x − y��2−1/8 . �4.14�

For finite h and T Eqs. �4.11� and �4.14� express the conduc-
tance in terms of the two-point function for the chiral spin
operator at finite magnetic field h. Following the analysis
leading to Eq. �4.6�, the two-point function for the chiral spin
operator is related to the one-point function of the bulk spin
operator by analytic continuation,

���x,����y,0��h = �O1/16�x��h�x→−iz, x� 0,y� 0.

The calculation of the one-point function of the Ising spin at
finite magnetic field h was addressed using integrability and
the form factor method.27–29 Different than the case of the
energy operator, a closed expression for �O1/16�x��h is not
available. In the limiting cases h=0 and h=�� CFT meth-
ods can be used.17 For BC obtained by fusion with operator
a, Eq. �3.5� gives �with �=1 /16�

���x,����y,0�� = �
1

�� + i�x − y��1/8 , xy� 0

S�1�

�� + i�x − y��1/8 , xy� 0,�
�4.15�

where S�1�=
Sa

1/16/S0
1/16

Sa
0/S0

0 . It is easy to calculate the conductance

with Eq. �4.15�, with the result G= e2

h �1−S�1��. At weak cou-
pling J=0 �a=0� we have S�1�=1, G=0. This is also the

result for the BC obtained by starting at the QCP and setting
K�Kc �local singlet phase�. At the QCP �a=1 /16� we have
S�1�=0, G=e2 /h. In the Kondo-screened phase �a=1 /2� we
have S�1�=−1, G=2e2 /h. We leave for a future work to apply
Eq. �4.14� in order to interpolate between those values of G
at finite temperature and h
 �K−Kc�. The additional diffi-
culty for this system arises due to the presence of the � GF
rather than the � GF.

V. UNIVERSAL CROSSOVER AT FINITE POTENTIAL
SCATTERING

Until here we assumed PH symmetry and emphasized that
the crossover is in the universality class of the boundary
Ising model. Now we shall consider the more general situa-
tion with potential scattering �PS�. We will see that the Ising
and charge SU�2�1 sectors of the theory are coupled. How-
ever this coupling can be written in a simple quadratic form
in the Majorana SO�8� representation that will be introduced
below.

It is convenient to write HPS, defined in Eq. �2.2�, in the
�� basis �defined in Eq. �2.12��,

HPS =
VL

L + VR
R

2
��1�

†�1� + �2�
†�2�� + Re VL

R��1�
†�2� + �2�

†�1��

+ VA��1�
†�1� − �2�

†�2�� + VBi��1�
†�2� − �2�

†�1�� , �5.1�

where

VA =
VL

L − VR
R

2
cos �m − Im VL

R sin �m,

VB =
VL

L − VR
R

2
sin �m + Im VL

R cos �m. �5.2�

In the parity-symmetric case VA=VB=0.
At the QCP the PS terms describing charge transfer be-

tween channels �1� and �2� generate relevant perturbations.10

To see this consider their Bose-Ising representation �using
Table I�,

�1�
†�2� + H.c. � �h1�†�z�h2�� ,

i�1�
†�2� + H.c. � �h1�†�h2�� . �5.3�

At the nontrivial fixed point the energy operator � “disap-
pears” by double fusion; hence one obtains two relevant
boundary operators �h1�†�z�h2� and �h1�†�h2�, with dimension
�=1 /2. In the parity-symmetric case only the first operator
is allowed. These relevant operators have the dimension of a
free fermion. Following Gan11 a fermion representation
emerges naturally in the SO�8� representation that we shall
introduce in Sec. V A. In order for these relevant operators to
have bosonic statistics, in the SO�8� representation indeed
they are written as a product of a bulk fermion with a local
fermion with dimension �=0, which can be associated with
a leftover impurity degree of freedom. On the other hand the
intrachannel PS terms lead to marginal operators at the QCP,

�1�
†�1�� �2�

†�2� � I1
z � I2

z . �5.4�

RL
t1L t1R

t12

B

tB

S1

S2

FIG. 5. Schematic description of the double QD proposed by
Zaránd et al. �Ref. 17� as a realization of the 2IKM.
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A. Fixed point Hamiltonian in SO(8) representation

Following Ref. 30 we bosonize the original theory and
introduce four left moving bosonic fields: ��†j�

� j��
ª

1
2��x� j�. In terms of the bosons we can write the fermions

as � j�� �Fj�e
−i�j�. The Klein factors Fi� take care of our sign

convention required for products of exponentials of bosonic
fields. They satisfy31

�F�,N�� = ���F�, �F�,F�
†� = 2���,

�F�F�
† = F�

† F� = 1�, �F�,F�� = 0, �5.5�

and �F� ,���=0, where � ,�= �i ,�� and N� is the fermion
number of species �.

Subsequently four linear bosonic combinations are de-
fined, corresponding to charge, spin, flavor, and difference of
spin between the flavors,

�c =
1

2�
j�

� j�, �s =
1

2�
j�

��z��
�� j�,

� f =
1

2�
j�

��z� j
j� j�, �X =

1

2�
j�

��z� j
j��z��

�� j�.

Since the exponents of these new bosons have dimension
1/2, we define new fermions �A�FAe−i�A

, A=c ,s , f ,X. The
new Klein factors satisfy Eq. �5.5� with � ,�=c ,s , f ,X. To fix
a convention we define31

FX
†Fs

† = F1↑
† F1↓, FXFs

† = F2↑
† F2↓, FX

†Ff
† = F1↑

† F2↑.

The free part of the Hamiltonian can be written equivalently
in bosonic or fermionic form,

H0 = �
A
� dx

2�
��x�A�2 = �

A
� dx�A

†�i�x��A.

Taking the real and imaginary parts of those fermions we
obtain eight Majorana fermions,

�1
A =
�A

† + �A

�2
, �2

A =
�A

† − �A

�2i
.

One can establish a connection between the descriptions
of the 2IKM in terms of SU�2�1

charge1SU�2�1
charge2

SU�2�2
spinZ2 with eight Majorana fermions. The two

SU�2�1 groups can be represented in terms of two bosons
�c�� f

�2
. The SU�2�2

spin current j�s= 1
2��†i�

���
	�i	� has the represen-

tation �js�z=�s
†�s , �js�+=�2�1

X�s
†. Of particular interest for

the present work, the flavor current �Eq. �3.2�� has the rep-
resentation �see Table I�

�j f�z = � f
†� f, �j f�+ = − �2i� f

†�2
X. �5.6�

The Ising fermion � can be identified with �2
X. In fact, the

nontrivial BC involves only one out of the eight Majorana
fermions, reading �2

X�0−�=−�2
X�0+�. For a description of the

physics relative to the nontrivial fixed point it is convenient
to work with the continuous Ising fermion field,

��x� = sgn�x��2
X�x� = ��x�sgn�x� . �5.7�

Using Eq. �4.3�, in the PH symmetric case the relevant op-
erator can be written as

�B = i��x = 0�a = i�sgn�x��2
X�x��x=0 · a . �5.8�

Now consider the non-PH symmetric case. From the
SO�8� representation of the flavor current �Eq. �5.6��, the two
PS terms in Eq. �5.3�, �j f�x,y, are written in the trivial fixed
point as i�2

X�1,2
f . CFT methods tell us that the operators at the

QCP are obtained from the operators at the trivial fixed point
by double fusion with the spin operator of the Ising model.
Having identified �2

X with the Ising fermion, double fusion
gives �2

X→1+�2
X. To obtain the correct bosonic statistics we

argue that this fusion rule should be modified to

�2
X → a + �2

X,

where a is the local fermion appearing in Eq. �5.8�. Hence
the relevant PS operators at the QCP are

�h1�†�z�h2� � i�1
f a ,

�h1�†�h2� � i�2
f a . �5.9�

Thus, a couples the Ising sector with the charge sectors. The
main argument in favor of this form is obtained by consid-
ering the self-correlation function of the relevant operators,
e.g.,

��h1
†h2�����h1

†h2�� � G�0���,0,0�Ga��� ,

at the PH symmetric point. Fourier transforming Eq. �4.9� for
Ga�i�n� we can deduce the behavior of Ga���: in the limit �
�h2���h2�, the correlator Ga��� goes like �0��−1�. This im-
plies that in these two limits the correlator ��h1

†h2�����h1
†h2��

goes like �−1��−2�, respectively, as expected from an operator
with scaling dimension �= 1

2 �1�. This scaling behavior is ob-
tained relying on the fact that a contains the information
about the crossover. It explains why a, and not some other
decoupled local operator, should be coupled to �1

f and �2
f in

Eq. �5.9�. On the contrary, the presence of an additional de-
coupled local operator at the QCP is ruled out as inconsistent
with the ground state degeneracy. Away from the PH sym-
metric point, the local operator a becomes also sensitive to
the deviation from the QCP due to potential scattering and Ga
is modified relative to Eq. �4.9�.

Setting together Eqs. �5.8� and �5.9�, the correction to the
fixed point Hamiltonian in SO�8� representation is

�H = i��1�2
X�x�sgn�x� + �2�1

f �x� + �3�2
f �x��a�x=0,

�5.10�

with

�1 = c1
K − Kc

�TK

,

��2,�3� = c2
�TK��Re VL

R,VB� , �5.11�

where VL
R and VB are given in Eqs. �2.8� and �5.2� and c1 and

c2 are constants of O�1�. This estimate of ��2 ,�3� will be
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justified below; as we shall see, based on the dimension �
=1 /2 of the three relevant operators in Eq. �5.10� we obtain
the crossover energy scale,

T� = �1
2 + �2

2 + �3
2 � �2. �5.12�

To estimate �2 and �3 we consider the renormalization
group flow of the interchannel potential scattering operators
���†1�

�2�� �H.c.�. In the presence of those operators the flow
to the QCP stops at energy scale TLR

� . To estimate TLR
� we

consider the renormalization of these operators in the pertur-
bative regime at energy scales D�TK and then in the non-
perturbative regime at energy scales D�TK, respectively. �A
related calculation for the two channel Kondo model appears
in Ref. 32.� We assume that K=Kc. At the initial scale D0
�TK the dimensionless bare values of these PS operators are
�0=� Re VL

R and �0�=�VB �see Eq. �5.1��. We assume
�0 ,�0��1. Since in the weak-coupling regime potential scat-
tering does not renormalize, we have

��TK� � �0, ���TK� � �0�.

These can be viewed as the initial values of the coupling
constants of the relevant perturbations �h1�†�z�h2� and
�h1�†�h2�, respectively. Since these operators have dimension
1/2, the dependence of their coupling constants on D�TK is
described by

��D�
��TK�

�
���D�
���TK�

� �TK

D
�1/2

.

The condition max���TLR
� � ,���TPS���1 gives the estimate

TLR
� � max�TK�0

2,TK��0��
2� . �5.13�

A more precise estimate would take into account higher or-
der terms in the 	 function for � ,��. However, we expect
that this would only change our estimate of TLR

� by logarith-
mic factors.

Identifying TLR
� with �2

2+�3
2 in Eq. �5.12� gives the esti-

mate for �2 and �3 given in Eq. �5.11�. Under the condition
�0 ,�0��1 one has a wide energy range TLR

� �D�TK for the
observation of the QCP. This can occur in a certain param-
eters regime, as we discuss in Sec. VI A.

We point out that our estimate for the energy scale TLR
�

�Eq. �5.13��, which agrees with Ref. 17, is inconsistent with
that of Sakai and Shimizu,21 who studied the 2IKM with
finite transfer matrix between the impurities using numerical
renormalization group. This discrepancy requires further in-
vestigation.

B. Linear conductance with potential scattering

We generalize the linear conductance calculation of Sec.
IV for finite potential scattering. Using Eqs. �3.3� and �5.6�
the odd current operator is

jo = 2i�2
f �cos �m�1

f + sin �m�2
X sgn�x�� . �5.14�

The operator a is now coupled to three free Majorana fields,
and its GF �Eq. �4.9�� generalizes to Ga�i�n�= �i�n
+ i�2 sgn��n� /2�−1, where �2 is defined in Eq. �5.12�. Simi-
larly,

− ��i�x�� j�y��i�n
= G�0��i�n,x,y��ij + hihj�G�i�n,x,y� ,

where

�G�i�n,x,y� = G�0��i�n,x,0�Ga�i�n�G�0��i�n,0,y� .

Generalizing Eq. �4.12� we obtain the odd current cor-
relator,

�jo�x,��jo�y,0���1,�2,�3
= �jo�x,��jo�y,0��free

+ �sin2 �m��1
2 + �3

2�

− cos2 �m��2
2 + �3

2��

4G�0��i�n,x,y��G�i�n,x,y� .

As a result the conductance has the scaling form

G/G0 = 1 − F�T/T��
sin2 �m��1

2 + �3
2� − cos2 �m��2

2 + �3
2�

�2 sin2 �m
.

�5.15�

We see that the conductance at the free fixed point ��=0� is
still given by G0= 2e2

h sin2 �m. At �→� the Fermi-liquid con-
ductance is

GFL =
2e2

h

��2�2 + cos2 �m��3�2

�2 . �5.16�

We may rewrite Eq. �5.15� as

G − GFL

G0 − GFL
= 1 − F�T/T�� .

C. Gan’s theory and its relation to boundary Ising model

Gan11 presented a solution of the 2IKM, constructing an
effective Hamiltonian for a finite region in the phase diagram
around the critical point by controlled projection. The effec-
tive Hamiltonian is solved exactly not only at the critical
point but also for the surrounding Fermi-liquid phase. Excel-
lent agreement was found with numerical renormalization
group and CFT, in spite of the fact that the theory of Gan is
not spin-SU�2� invariant. We shall substantiate the relation of
Gan’s theory to the CFT by showing explicitly that the op-
erators at the critical point have the same form for both theo-
ries. In Sec. VI we will use this approach to calculate the
nonlinear conductance.

Gan’s theory uses the SO�8� representation, and the two-
impurity spins turn into a local fermion d, where �d ,d†�=1.
Defining two Majorana fermions a= d−d†

�2i
and b= d+d†

�2
, Gan’s

Hamiltonian in the PH symmetric case involves only the
spin-flavor �X� sector and can be written as HG=HG

�0�+�HG,
where

HG
�0� =

1

2
� dx�2

Xi�x�2
X,

�HG = 2i�TK�2
X�0�b − i�K − Kc�ab . �5.17�

We shall show that for energy scales �TK this coincides with
the Ising model �Eq. �4.2��. To see this suppose K=Kc and
consider a mode expansion,
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�2
X�x� = �

k

�

��k�x��k + H.c.�, b = �
k

�

�uk�k + H.c.� ,

where ��k ,�k�
† �=��k−k��, ��k ,�k��=0, and where initially

we choose ��TK as an ultraviolet cutoff. In the basis of �k
Gan’s Hamiltonian is equal to H=�k�k�k

†�k. One can obtain
a Schrödinger’s equation for the wave functions �k�x� and uk
by equating the expansions of �HG ,�2

X�x��= �H ,�2
X�x�� and

�HG ,b�= �H ,b�. One obtains

2i�TK��x�uk + i�x�k�x� = �k�k�x� ,

− 2i�TK�k�0� = �kuk.

The solutions are �k�x�
eikx���x��k
�+�+��−x��k

�−��, �k�0�
= 1

2 ��k
�+�+�k

�−��, uk= 2
i�k

�TK�k�0�, �k
�−� /�k

�+�=e2i�, tan �=
2TK

�k
,

and �k=−k �note that we work with left movers�. While at
TK=0 we have the BC �2

X�0+�=�2
X�0−�, we see from the wave

function that the effect of the first boundary term in HG is to
modify this BC to �2

X�0+�=−�2
X�0−� for energies �TK. The

key observation is that the following operator identity holds
if one restricts the mode expansion of its left-hand side
�LHS� and right-hand side �RHS� to energies below a cutoff
��TK,

b =
1

�TK

�1�0� , �5.18�

where �1�x�=�2
X�x�sgn�x�. Physically this means that at en-

ergy scales below TK the local operator b is absorbed into the
field �2

X and changes its BC. Using the operator identity �Eq.
�5.18��, we see that the term 
K−Kc in �HG is equivalent to
the boundary operator in the Ising model �Eq. �5.8��. This
establishes the connection between Gan’s theory and the
boundary Ising model arising from the CFT solution, show-
ing that Gan’s anisotropic theory describes correctly also the
vicinity of the isotropic fixed point.

VI. CROSSOVER AT FINITE BIAS

Gan’s formulation of the QCP in the SO�8� Majorana rep-
resentation provides a direct way to calculate the nonlinear
conductance at finite source drain voltage along the cross-
over from the NFL fixed point to the surrounding FL fixed
points, including the PH symmetry breaking. Relegating the
details of the calculation based on the Keldysh technique to
the Appendix, our result is

G = G0 + GSF� T

T�
,
eV

T� � + GAF�� T

T�
,
eV

T� � ,

F�t,v� =
1

4�t
Re �1�1

2
+

1

4�t
+

iv
2�t

� ,

F��t,v� =
1

4�t
Im �1�1

2
+

1

4�t
+

iv
2�t

� ,

GS

2e2

h

=
− �1

2 sin2 �m + �2
2 cos2 �m + �3

2�1 − 2 sin2 �m�
�2 ,

GA

2e2

h

= sin�2�m��3
�2 sin �m + �1 cos �m

�2 . �6.1�

Here T�, G0, �m, and � are given in Eqs. �5.12�, �3.9�, �2.11�,
and �2.7�, respectively; �1�z� is defined below Eq. �4.13�.
This result is valid for eV ,T ,T��TK. When T��T ,eV the
system is in the FL state and the nonlinear conductance co-
incides with the linear conductance �Eq. �5.16��, GFL=G0
+GS.

The scaling functions F�t ,v� and F��t ,v� are symmetric
and asymmetric in v, respectively �see Figs. 6 and 7�. Having
G�V��G�−V� is a signature of interactions since the Land-
auer noninteracting formula22 leads to G�V�=G�−V�. This
leads to a universal rectification effect. This rectification ef-
fect is odd under parity, �3→−�3. Note however that it does
not have a well-defined transformation property with respect
to �→−�. To check the symmetry properties of our results
we considered the two-impurity Anderson model for our
model �Fig. 1� to first order in the �intradot� interaction U.
While at U=0 we have G�V�=G�−V�, which follows from
Landauer formula, to first order in U we get a finite G�V�
−G�−V�. This asymmetric behavior of the conductance fol-
lows from an asymmetric dependence of the occupation of
the dots on voltage. This simple limit gives the same sym-
metry properties of G�V�−G�−V� compared to the QCP,
namely, the rectification effect is odd under a parity, and does

�2 �1 0 1 2
eV�T�

0.2

0.4

0.6

0.8

1

G
�V
��

G
��

V
��

2
G

0
����
����
����
����
����
����
����
������
����
����
����
�����
����
����

2
G

S

2ΠT�T��
0
1
2
4

FIG. 6. Scaling function for the V-symmetric part of the nonlin-
ear conductance.
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FIG. 7. Scaling function for the V-asymmetric part of the non-
linear conductance.
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not have a well-defined symmetry property with respect to
�→−�.

At energy scales comparable to TK the conductance has
additional voltage and temperature dependence due to irrel-
evant operators at the QCP. The leading irrelevant operator is
Hirr=TK

−1/2i�x�1�x�a �x=0, with dimension �=3 /2.9,10 In the
proposed realization of the 2IKM of Zaránd et al.17 it leads
to the conductance correction �G
� T

TK
, characteristic of a

NFL fixed point. However in the present system the irrel-
evant operator gives a nonzero correction only to fourth or-
der, leading to �G
 � T

TK
�2, as we outline below. The a-GF has

an additional self-energy �R=−i�2 /TK,

Ga
R��� =

1

� + iT�/2
→

1

� + i�T�/2 + �2/TK�
.

This has poles at �=−iTK
1
2 �1��1− 2T�

TK
�. For T��TK we

have

Ga
R��� �

1

� + iT�/2
−

1

� + iTK
.

Qualitatively, the irrelevant correction at finite TK has the
same form of the fixed point conductance with T� /2→TK.
Indeed at energy scales smaller than T�, the latter has qua-
dratic dependence on T /T� and eV /T�.7 It should be pointed
out that to fourth order in Hirr it is no longer consistent to
disregard more irrelevant operators of dimension �=2. How-
ever their inclusion leads only to the modification of the
effective Kondo temperature in the corrections �T /TK�2 and
�eV /TK�2.

In Figs. 8 and 9 the conductance is plotted in the parity-
symmetric case at �3=0 and zero temperature as a function
of source drain voltage for different ratios �2 /�1. The generic
behavior of G�V� consists of a wide peak of width TK and
height G0, with a superimposed narrow structure �peak or
dip� of width T�, with height GS �relative to the background
G0�. Note that GS is positive �negative� for �1

2 sin2 �m
� ����2

2 cos2 �m+�3
2�1–2 sin2 �m�, leading to a narrow

peak �dip�. When �3=0 and �1 tan �m��2, Eq. �6.1� pre-
dicts a peak amplitude close to the unitary limit 2e2 /h. For
this case, we mention that when TLR

� and �K−Kc� TK, our
results do not apply, and we expect a splitting of this peak as
a function of V.15,33 We can obtain this behavior on a quali-
tative level by going back to the high energy E�TK descrip-
tion with Eq. �5.17�.

In Figs. 10 and 11 we plot the conductance under the
same conditions except �3=1 /�10 and �3=1 /�2, respec-
tively, showing asymmetric behavior. When GA�0 �GA
�0� �defined in Eq. �6.1��, the slope of the conductance at
V=0, dG

dV �V=0, is negative �positive�. The sign of GA is
changed under a parity transformation ��3→−�3�, but
it also depends on the sign of the combination
�sin�2�m���2 sin �m+�1 cos �m��.

A. Observability

In this section we discuss the realizability of the critical
point in real experiment. Dealing with a repulsive critical
point, the first condition we are concerned with is the small-
ness of the relevant perturbations, T��TK. Second, we shall
list some marginal corrections.

In order to tune K=Kc�0, it is needed to reduce the
ferromagnetic contribution KRKKY �Eq. �2.3�� compared to
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FIG. 8. Nonlinear conductance at �3=0 for �2 /�1=0,1 /4,1 /2.
The line shape consists of a narrow peak or dip structure of width
T�, superimposed on top of a wide peak of width TK.
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FIG. 9. Nonlinear conductance at �3=0 for �2 /�1=0,1 ,5,
reaching the unitary limit when the relevant perturbation is domi-
nated by potential scattering, namely, �2��1.
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FIG. 10. Nonlinear conductance at finite �3=1 /�10 for �2 /�1

=0,1 /4,1 /2, showing asymmetric features.
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FIG. 11. Nonlinear conductance at finite �3=1 /�2 for �2 /�1

=0,1 ,5.
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K12 �Eq. �2.1��, either �i� by setting �=�, which is sufficient
in the ideal situation where the device is perfectly parity
symmetric, or �ii� in the more generic and realistic case,
where parity symmetry is only approximate, by creating
large asymmetry,

t2/t1�
t12

U��J�
��TK

U

1

�J
. �6.2�

The limit t2=0 corresponds to the series QD. In either case,
using Eq. �2.1�, the condition K=Kc�TK is achieved by tun-
ing the interdot coupling t12��UTK.

At K=Kc ��1=0� Eqs. �5.11� and �5.12� give the cross-
over scale,

TLR
� = T��K=Kc

= TK��Re �VL
R�2 + ��VB�2� ,

where VB and VL
R are given in Eqs. �5.2� and �2.8�, respec-

tively. In the parity-symmetric case �i� we have VB=0, and
VL

R is real and dominated by its second term in Eq. �2.8�
because �=�, leading to

TLR
� /TK � ��VL

R�2 � ��J�2TK

U
� 1, �6.3�

as required for the validity of the critical theory.
In the more realistic case �ii�, on top of Eq. �6.2� we

bound t2 / t1 from below,

�TK

U
� t12/U! t2/t1��TK

U
,

such that VL
R is dominated by the first term in Eq. �2.8�. In

addition we demand approximate parity symmetry,

�t1L − t2L�
t1

� �TK/U�t1/t2�, sin��L −�R�� 1,

such that �VB��Re VL
R. Here t1=

t1L+t2L

2 and t2=
t2L+t1L

2 . It leads
to TLR

� /TK���VLR�2���J�2�
t2

t1
�2�1, as required for the valid-

ity of the critical theory.
Next we estimate the marginal corrections. Spin SU�2�

symmetry is broken by the Zeeman energy EZ=g�BB�S1
z

+S2
z�. This leads to a marginal operator11 which reads in the

Bose-Ising representation �� �. In GaAs QDs, the Zeeman
energy is reduced due to a small g factor: for the experimen-
tal conditions in Ref. 1 TK corresponds to a magnetic field of
few tesla or equivalently to �103 flux quanta in a area of
�m2; for a magnetic field corresponding to �=� we have
�EZ��10−3TK, leading to small marginal correction to the
conductance.

Other marginal operators allowed at the QCP are the inter-
and intrachannel PS �Eqs. �5.3� and �5.4��. These operators
have the SO�8� Majorana representations �1�

†�2�+H.c.
� i�2

X�1
f , i�1�

†�2�+H.c.� i�2
X�2

f , �1�
†�1�� i�1

c�2
c + i�1

f�2
f , and

�2�
†�2�� i�1

c�2
c − i�1

f�2
f , and can lead to corrections of O��2J2�

to the conductance. However, the T=V=0 conduction peak
at K=Kc is expected to be unaffected, with G=2e2 /h. This
follows because, except for �1�

†�1�+�2�
†�2�, which involves

only the charge sector and does not affect transport, the other
PS operators involve fields whose BC are strongly modified:

due to Eq. �5.7�, �2
X�0+�=−�2

X�0−�, and due to �H, Eq. �5.10�,
at energies �T

LR
* , we have ��2�1

f +�3�2
f ��0+�=−��2�1

f

+�3�2
f ��0−�. The evaluation of the original fields in terms of

which the PS operators are written at the boundary gives
zero, e.g., �2

X�0�= 1
2 ��2

X�0−�+�2
X�0+��→0.

Parity symmetry �Eq. �2.5�� of the Kondo interaction HK
is not required. This follows because in the PH symmetric
case there are no relevant operators at the QCP that are odd
under parity. Indeed the QCP has been observed numerically
for a broken parity Kondo Hamiltonian.17 With finite PS, we
have considered explicitly the effect of the relevant parity-
odd PS terms.

VII. CONCLUSIONS

We studied double quantum dots in the vicinity of the
quantum critical point of the two-impurity Kondo model. In
the PH symmetric model we used a mapping to the boundary
Ising model with finite boundary magnetic field to calculate
the finite temperature crossover of the conductance from the
QCP to the stable fixed points. This method generalizes the
CFT approach, which addresses only the vicinity of the fixed
points. We used this method to relate the conductance of the
proposed system of Zaránd et al.17 to the one-point function
of the magnetization operator in the boundary Ising model
which can be calculated numerically.

Using the method developed by Gan, we solved the gen-
eral and experimentally relevant case with potential scatter-
ing and found the nonlinear conductance at finite tempera-
ture along the multidimensional crossover from QCP to
surrounding FL states. Compared to the series double QD,
we found that in the general configuration the universal scal-
ing function contains both symmetric and asymmetric terms
in the source drain voltage, leading to a current rectification.
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APPENDIX: CALCULATION OF THE NONLINEAR
CONDUCTANCE USING KELDYSH GREEN’S-FUNCTION

TECHNIQUE

We briefly recall basic concepts of the nonequilibrium
formulation. Then the problem at hand will be addressed,
and the calculation of the nonlinear conductance will be out-
lined.

One usually assumes that the system is in equilibrium at
some initial time, taken here to be t=−�. A perturbation H1
is turned on adiabatically in time, H=H0+e"tH1 to drive the
system out of equilibrium. The expectation value of an op-
erator such as the current I is given by its trace in the Heisen-
berg picture at t=0 weighted by the initial distribution func-
tion,
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�I� = Tr�e−	H0u†�0,− ��Îu�0,− ��� ,

where u�t0 , t�=T exp�−it0
t dt�H�t��� and T is the time order-

ing operator. In order to employ Wick’s theorem, one trans-
forms to the interaction picture, �I�=Tr�e−	H0uI

†�0,

−��ÎIuI�0,−���, where uI�t0 , t�=T exp�−it0
t dt��H1�I�t���,

and OI�t�=eiH0tOe−iH0t. Following Keldysh, for a perturba-
tive expansion of this quantity it is convenient to introduce
four types of GFs,34

G11�1,1�� = − i�T��1���1��� ,

G12�1,1�� = G��1,1�� = i���1����1�� ,

G21�1,1�� = G��1,1�� = − i���1���1��� ,

G11�1,1�� = − i�T̃��1���1��� .

Here T̃ is the antitime ordering operator. It is convenient to
consider an alternative set of GFs by defining the Keldysh
GF matrix G� = � GR G�

0 GA �, where

GR,A�1,1�� = # i����t1 − t1�������1�,��1���+� .

Given a self-energy, �� = ��
R ��

0 �A �, the Keldysh GF matrix has
the expansion

G� ��� = G� �0���� + G� �0������ ���G� �0���� + ¯ , �A1�

where matrix multiplication in Keldysh space is understood
and A���=dtei�tA�t�. This leads to the Dyson equation for
the retarded/advanced components of G� ,

GR��� = GR�0�
��� + GR�0�

����R���GR��� , �A2�

and to the Keldysh equation,

G� = GR��GA + �1 + GR�R�G��0��1 + �AGA� . �A3�

We now apply this scheme to our problem with

H0 = �
j=1

2

�
A=c,s,f ,X

1

2
�

−�

�

dx� j
Ai�x� j

A +
eV

2 �
�

�NL� − NR�� ,

H1 = �HG + i�2�1
f a + i�3�2

f a ,

where Ni�=dx�†i�
�i� �i=L ,R�. Here H0 is the J=0 fixed

point Hamiltonian, including the source drain voltage V, and
�HG is given in Eq. �5.17�. It is more convenient to use �HG,
which includes the local b operator rather than the first term
in �H, i�1�2

X�x�sgn�x�a. Both formulations should give the
same result for energy scales �TK, as we showed generally
in Sec. V C. At t=−� the system consists of two decoupled
leads at equilibrium with different chemical potentials. It is
convenient to make a change of basis, in which the operator
Y = 1

2���NL�−NR��= 1
2−�
� dxjo�x� is diagonal. Using Eq.

�5.14� for jo, we see that

Y = �
−�

�

dx�†� = i�
−�

�

dx�−�+,

where we defined new fermions � and 	, �=
�+−i�−

�2
, 	

=
	+−i	−

�2
, in terms of the four Majorana fermions �� and 	�

given by

�+ = �2
f , 	+ = �1

X,

�− = − �cos �m�1
f + sin �m�2

X� ,

	− = �sin �m�1
f − cos �m�2

X� .

We see that the voltage raises the chemical potential of the �
fermions by eV, whereas the chemical potential for the 	
fermions remains zero. The system is at equilibrium at
t=−� since in this case the � and 	 fermion numbers are
conserved. At t�−�, H1 leads to the current operator

Î= i�Y ,H1� which drives the system out of equilibrium and is
given by

Î = − 2i�TKsin �m�+�0�b − i�2 cos �m�+�0�a − i�3�−�0�a .

�A4�

We shall express the expectation value of the current by
Green’s functions G� ���t� where the indices refer to the
fermion local operators �= �a ,b�= �1,2� and �= ��+�x
=0� ,�−�x=0� ,	+�x=0� ,	−�x=0��= �1,2 ,3 ,4�. Using Eq.
�A4� the current expectation value reads

�I�t = 0�� = − 2�TKsin �mGb�+

� �t = 0� − �2 cos �mGa�+

� �t = 0�

− �3Ga�−

� �t = 0� . �A5�

We construct the exact GFs �appearing in Eq. �A5�� from
the free GFs calculated at t=−� �H1=0�: for � ,��
= ��+ ,�− ,	+ ,	−�= �1,2 ,3 ,4�, one finds

�GR,A����
�0� =

#i

2
����,

�G����,��
�0� = i f̃���, �G��	�,	�

�0� = if��� ,

�G����,�#
�0� = �

1

2
�f�� − eV� − f�� + eV�� . �A6�

Here f�x�= �1+ex/T�−1, f̃�x�= 1
2 �f�x+eV�+ f�x−eV��. Note

that the voltage couples the two Majorana fermions �+ and
�−, and here we assumed a bandwidth �� ,V ,T. The free GF
for the local Majorana fermions �= �a ,b�= �1,2� is �GR����

�0�

=������+ i��−1, where � is a positive infinitesimal. We write
H1 in a convenient form

H1 = − i�TK�1ab − i�
�=1

4

�
�=1

2

��+,�−,	+,	−������a,b��,

where

��11,�21,�31,�41� = �− �3,�2 cos �m,0,− �2 sin �m� ,

ERAN SELA AND IAN AFFLECK PHYSICAL REVIEW B 79, 125110 �2009�

125110-14



��12,�22,�32,�42� = 2�TK�0,sin �m,0,cos �m� . �A7�

We obtain the full GF G� ��� for � ,��=a ,b as follows. First
suppose K=Kc ��1=0�; we denote the different GFs and self-

energies in this case as Ḡ, �̄, respectively. At K=Kc the
self-energy matrix is

�̄� ��� = − ���G� ���
�0�
����� �repeated indices summed� .

Equations �A6� and �A7� give �̄aa
R =− i

2 ��2
2+�3

2�, �̄bb
R =−2iTK,

and �̄ab
R =�ba

R =0. Equation �A2� gives Ḡaa
R = ��+ i

�2
2+�3

2

2 �−1,

Ḡbb
R = ��+2iTK�−1, and Ḡab

R = Ḡba
R =0. For energies �TK we

can approximate Ḡbb
R = �2iTK�−1. For the lesser GF Eq. �A3�

gives

Ḡ� = ḠR�̄�ḠA, �A8�

where matrix equation and multiplication in ab space are
understood.

For K�Kc the full matrix GF G� ��� can be calculated from

the series Eq. �A1� where G�0�→ Ḡ and

�R = �A = �TK�1�
y ,

��=0, where �y acts in ab space. Equation �A2� gives

Gaa
R ��� = �� + i�2/2�−1,

Gbb
R ��� = �2iTK�−1 − ��1

2/4TK��� + i�2/2�−1,

Gab�ba�
R ��� = # ��/2�TK��� + i�2/2�−1.

For G�, since ��=0 we are left with the second term of Eq.
�A3�, which simplifies to �using Eqs. �A2� and �A8��

G� = GR�̄�GA,

where matrix equation and multiplication in ab space are
understood.

The GFs appearing in the current Eq. �A5� satisfy the
Dyson equation,

G� ���t = 0� =� d�

2� �
��,��

G� ������i�����G� ���
�0� ��� . �A9�

To evaluate G� ��
� we use the identity �A� B� ��=A��B� A+A� RB��.

We encounter two types of integrals for the current,

I��V,T,�2� = i� d�
f�� − eV� − f�� + eV�

� + i�2/2

= Im ��1

2
+
�2/2 + ieV

2�T
� ,

I��V,T,�2� =� d�
f��� − f̃���
� + i�2/2

= ��1

2
+
�2/2
2�T

�
− Re ��1

2
+
�2/2 + ieV

2�T
� .

Note that I��V�=−I��−V�, and I��V�= I��−V�. From these re-
sults one can readily obtain the result for the nonlinear con-
ductance �Eq. �6.1��.
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